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1. Introductioﬁ

The one variable secant method, for the solution of equations,

has been known for a very long time as being computationally moxre
efficient than Newton's method. Among the extensions of this methgd to
n-dimensioﬁal ﬁroblems,.those proposed by Wolfe [8 }Kand Barnes [2 ],
afe amoﬁg the most interesting ones, because, when they do cdnverge,
they are compwdationslly oonSiderzisly wozre efficieny! thas Newten's
method (see, for example, the discussion in [5 1). Howéver, as can be
séenAfromvthe counter examples quoted in 15 1, these methods may not

converge. More recently, Ritter [7 ] proposed a new algorithm for-
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with a secant type method, which contains an angl »Eéstﬁ(beﬁﬁgenfrkg
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direction of -descent and the gradient) to ensure ggpveﬁgghcé.‘p hi
ST &cﬂ EIrA

" angle test depends on a pérameter that may be qui

gradient mode most, if not all the time.
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In this paper we present a new gradient-secant algorithm for
unconstrained optimization problems of the form min {£(z) | z € R},
It differs from Ritter's method both in the fact that it does not use
an angle test and in the manner in which it updates the appro#imate
hessian. Roughly speaking, in solving a problem, this algorithm uses
Armijo gradient method iterations [ 1] until it reaches a region where the
Newton method is.more efficient than the gradient method. Then it
'switches over to a secant form of oper;tion. Under the aésumption that
f is qontinuOUSly differentiable, we have shown that ény accumulation
poiﬁt 2, of a sequence construcﬁea by this algorithm, must be
stationary. Under the stronger hypotﬁesis that f is twice continuously
differentiable and stfictly convex, we were able to sﬁow that any
sequence {zi}f . constructed by our algorithm éonvergéé superlinearly

1= .
to the unique minimizer ; of f(+), with rate Tu, where " is the unique
positive root-of tn+l - t" -1=0, i.e. that for some 0 é(O,l) and
s . _

T

some R €(0,%), |z, -2 I <ro n o 4=0, 1, 2, .. . Both theoretical

i
considerations and our computational expefiments indicate that this new
algorithm is considerably faster than the Newton method, and Lootsma

[4) reports that on many problems Newton's method is superior to

-a number of conjugate direction and quasi-Newton methods. It is

therefore not unrealistic to hope. that, as experience with the new method
accumulates; it will”emerge as one of the most efficient methods for

the solution of certain classes of unconstrained optimization problems.
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Step O0: Set i

2. The Secant Method.

Consider the problem
min{f(z) | z € R™}

To begin, we shall make only the following minimal assumptions.

Assumptions: (a) f 1Is continuously differentiable and, (b) f.is bounded
from below. ﬁ

Throughout this paper, when we say that an algorithm is convergent, .
we mean‘that every limit point<2 of a sequence it constructs in solving
(1) satisfies £(2z) = 0.

The assumptions (2) Qill suffice to prove that the algorithm we are
about to.state is convergent. We shall later.show, under stronger
assumptions, that it converges superlinearly and establish '‘a bound on
rate cf
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We shall use the notation

g(z) = vi(z), z € R™.
Algorithm:

Data: & > 0, o € (0, %), B E (0,1), b > 0 (large)’,2 3_2; z. € R%,

0

; . Ea s . .th
H a symmetric positive definite n x n matr1x,~ej = JE—~column of n xn

unit matrix, j =1, 2, .., 0.

0, 3=0,p=0, v =8¢, ﬁ‘= . Compute g(zo) and
=y =1 12,

set Y, = v, g(zo) |

Step 1: Compute g(zi). Stop if g(zi) = 0,

Step 2: If j <n, set j =j + 1 and go to step 3; else'set j = 1 and

+ The purpose of the constant b is to make the algorithm use ‘a steepest
descent step whenever H,, the current approximation to the hessian of £(+)
is "too close" to being singular. A lower bound on b is b > 2 I H(z)=-1 |
for all 2 which are local minimizers of f(). In practice, setting.

b = « does not appear to destroy the convergence of the algorithm,



go to step 3.
Step 3: Set e, = mln{G,vi}.
Step 4: Compute g(zi + €y ej).

Step 5: Replace Ej’ the jEE-column of H, by

=1 :
A, = e [e(z; + ¢, ej) g(z)]
to obtain a new matrix H, and set Hi = ﬁ.+

Step 6: 1f "g(zi) I f-Yp’ go the step 7; else set W = z; 80 to step 15.

Step 7: If H;l exists and | H;l I < b, compute

_o~1
v, Hi g(zi)
and go to step 8; else set w = z, and go to step 15.
Step 8: If (vi, g(zi) ) <0, go to step 9; else set w = z; and go to

o 18
cp 15,
Step 91 Set 'k = 0.
' k
Step 10: Compute f(zi - B Vi).

Step 11: If
f(z, - BkV') - f{z )y <0
- S A SO

go to step 13; else go to step 12.

. Step 12: 1If k < Z; set k =k + 1 and go to step 10; else gé.to step 15.

A : : k k _
Step 13: Fompute g(z_i -8B Vi). If g(zi - B Vi) = 0,

C kL
set z, ., = 2, B8 vi~§nd stoP.
Step 14: 1If

l g(zi - Bkvi)" 2 < @ - 28£u) | g(Zi)" 29

- k . )2 s = ptl, set i = 141
set‘zi+l =z B Vo set Yp+l g(zi+l) , set p = ptl, set i } i
1 -1

+ Note that since H differs from H in only one column,H. = H :
new [¢] 1 new

1d

can be obtained from H;id by means of the standard updating formula.
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10.

11.

12,

13.

and go to stepAZ; else set w = z, - Bk

i vy agd go to step 15.

. 1 V>
Step 15: Compute the smallest 1nteger s, > 0 such that

% % 2
£(z, -8 * 8(z;)) - £(z) <-8"al gz 17

and set y = z; B g(zi).

Step 16: If f(y) < f(w), set 2,1 =Y set i = i+l, and go to step 1;
= . i = 4 4 "
else set Z,41 = Vs set i i+l and go &o s;ep 1.

Since when 8(zi),¢ 0, one can always find a finite Sy such that (9)

is satisfied, algorithm (4) is obviously well defined.

Theorem: Suppose that the assumptions (2) are satisfied and that
algorithm (4) has constructed an infinite sequence'{éi}z=om Then évery

limit point z* of {zi}:= satisfies g(z*) = 0.

0

Proof: Suppose that z* is a limit point of'{zi}, that g(z¥) # 0 and that

= A o L. 2 (T 1r PGl T ST P ad N A SV U DAL AR B Y N - R P T
Z, v ZT LUl 3 Y~ Inyg Wilil N di}l dilidldle Suusci Ul Luce yu.:u.t_.ch LILLERELS .

i
Now there are two possibilities.

—

(i) There exists an infinite subset K'T K such that for all i €K',

either
55
2341 = 23 ~ BT 8(zy)
or
_ k
zi+l =z, B v,
and

. k Si
£z, - 8% < £z, - & Tg(z).

Since-g(z*) # 0 and z, > z% for 1 € K', it follows from the discussion in



14,

15.

16.

17.

18,

sec, 2.1 of [ 6] (see theorem 22 and algorithm 35) that there exists

a 86(z%) < 0 and an integer N such that

£(z;,,) - £(z;) < 8(z*%) <0 for all i >N, 1 €X',
But K' is an infinite subset, and'{f(zi)}oio=O is a monotonically
decreasing sequence, hence (14) contradicts the assumption that f£(z) is
bounded from below. Thus, if (i) holds, then g(z*) = 0.

The second possibility is .

(ii) There exists an infinite subset K" T K such that

z, =2z, - B Vi for all i € K"

and

3
I g(zi+l)" 2 < (1-28 9 | g(z,) 1%for all i € K"

In this case the sequenée'{yp} is infinite, monotonically decreasing and
bounded from below by zero. Hence Yp - y* > 0. Now, since whenever (15)

) "2, for some integer p, and

and (16) take place? Yp+l='"'g(zi+l

L 2
I 2 N - 2 - 2g% | ) 1. Hence, since
Yp 3.' g(zi) 0 ’Yp+l Yp i-Yp+l i g(zi) I < g 8(21) ‘ >3
z, > z# for i € K", and since g(+) is continuous by assumption (2),

there exists an infinite subset K'' of the positive integers such that
Y v < =% I g(z%) 12 for al1 p € x".
ptl 'p— .~ T

But (17) contradicts- the fact that Yo * ¥ > 0.
Hence we must have g(z*) = 0. H

. The following result is a direct consequence of theorem (10).

Corollary: Algorithm (4) is convergent whenever problem (1) satisfies:



the assumptioms (2).

n
The following corollary can be deducéd from theorem (10), whieh
implies that g(zi) + 0 as i'= 2 and hence that Ziy1 T %y >0 as i = @,

and theorem (1.3.66) in [ 6].

19, Corollary: Suppose that the s@qgence‘{zi}:=o.described in theorem

(10) is compact and that the function f(+) has only a finite number
of stationary poinCS,Athen there exists a g¥ € R™ such that z; @ g¥
and g(z%) = 0, H

We are now ready to establish the rate of convergence of algorithm

(4). For this purpose we shall need to assume the following.

20. Assumption: The function f is (a) three times contiHuéuSlY differentiable
and, (b) strictly convex. " |

Note tﬁat under assumption (20), the level sets of f(+) are-
compact and there exists only one point z ( the minimizer of £(z)

corollary (19), whenever assumption (20) is satisfied, any sequence

a=0

mizer z of £f().

{2}
i

constructed by algorithm (4) converges to the unique mini-

21, Lemma: Suppose that assumption (20) is satisfied and that algorithm (4)
has constructed an infinite sgquence'{zi}:=o converging te z, the

minimizer of f(+), Then there exists 0 < M < ® such that

i-n :
=

where Hi is as defined in the algorithm and

]
-~y
1



23,

24,

25,

26.

2
2 féz) , 2 € R™.
3z

H(z) =
Proof: Since (20) (b) is satisfied, the level set
C(zo) = {z I £(z) f_f(zo)} is compact and convex and hence, since (20) (a) is

satisfied, there exists a Lipshitz constant L < » such that for all

x, y€ C(zo),

I BH(x) - H(y) | <L I x -y |
(Note that’{zi}:=O is contained in C(zo)). Now, without loss of

generality, suppose that the jth column of Hi(j € {1, 2, ..., n}) is

. [g(zi_k e . e,) - g(zi-k)]’ where k € {0, 1, 2, .., n-1}.

i-k . J
Then, making use of (24), of the mean value theorem, and the fact that

<z, I by construction, we obtain that the magnitude

ik =" Fiax T ZFi-k-1

of the difference between the jEE-columnS of H(z,) and H; satisfies

I u -
(zi) ej -

- [g(z, teg g e ez )] I

i-k

i ©)) e dt I

1
I g [H(zi) - H(zi~k +t.oe;
d A

. : - I ae
17 ik ik & 0 4t

| A
-
O Sy ot

N

I

N
~+
™M
1]

1
<L g ez, -z I+t Wz, =2, 4 !|) dt
0 .

—-8-



27l

28,

<tz -2l+30e  -al+2lz 2D

The existence of a constant M satisfying (22) now follows from (26)
and the triangle inequality for norms, used in conjunction with the

addition and subtraction of terms in the right hand side of ( 6). H

Lemma: Suppose that assumption (20) is satisfied, that b > 2 i H(;)“1 I

and that the algorithm (4) has constructed a sequenqe'{zi}:;o.

Then thefe_exists an integer N such that for all i > N,

-1
2341 = 73 ~ By 8(z5),

Proof: First, since 2, > 2, the global minimizer of £(-), and (22)

holds, it follows from the perturbation Lemma (2.3.2) in [ 5] that
there exists an integer N' such that for all i > N' H;l exists and is
positive definite and | H:l I < b. Hence, for all i > N', the test in

. . -1 .
step 8 of the algorithm, i.e., (vi, g(zi) y= - (Hi g(zi), g(zi) ) <0,

- is satisfied for all i > N' and hence the  computation proceeds to step 9.

Next, applying the second order Taylor expansion, we obtain (with

vy = H L g(zy)

£z, - B g(z;)) - £(z) =

(g(z,), H;

'

]
2(2.) ) +§ (1-t) (HTY g(z.), Hz.-tv.) BT g(z.) ) de
i ‘ i i SN SO A i’ T
0 ‘ ’ )

: 1
- gz, W gz) ) §‘<1-t> Kt gz, BE) Y g(z))
)



29.

30.

31.

+ G gay), (lagmt v) = BE)) H' g(z) )] ae

Hence, since v, = Hzl g(zi) + 0 as i » « (because H;l - H(;)—1
and g(zi) + 0 causing H(zi - vi) - H(z) »> O uniformly for t € [0,1]

; . Ay w1 . . . .
as i > ®), and since H(z) H,™ > I, the unit matrix, as i > », it follows

from (28) that there is an integer N" > N' such that

3 -1 _ . "
f(zi Hi g(zi)) - f(zi) < 0 for all i > N",

i.e. the test in step 11 of the algorithm is satisfied with k = 0 for all
i > N".
Finally, consider 7 g(z) . Since f is three times continuously

differentiable,

2
' 2 p
A el B = a)T EGE) + W)
BZL r4 -
where W(z) is a continuous nxn matrix which satisfies W(z) = 0. Hence,

for all i-> N", expanding | g(zi—H;l g(zi))ll2 to second order terms

according to the Taylor formula, we obtain

I gyt gzl 2= T gl ? - 2 < me)” gz, 1y glz))
1 | .
+ 2 g((l-f) [(H;l g(zi),,ﬁ(zi—t vi)T H(zi—tvi)'H;l g(éi) )
. |

4] g2y, W(zmtv) BT g(z)) ) lde,

! o ey - o
Where v, = Hi g(zi). Settlng Hi(t) = H(zi—tvi) and Wi(t)_— W(zi—tvi)i

t €{0,1], (31) yields

~10-



32. I g(z,-v.) 12 - 1 2(2.) 12 L gz, z) Hy 8z,
1 1 1 . ",g(z) "2

i 1
l .

z i -1 . 2

' m s‘ (1-£) " Hi(t) Hi g(zi) i +

i

0

'33.

34.

(H;l g(zi), Wi(t) Hil g(zi? )] dt

Since v, > 0 as 1 » « and z; »> z as i » o, Wi(t) +~ 0 as i » =,

1 , . .
+ I as i > o, uniformly in

uniformly in t € [0,1] gnd similarly, ﬁi(t) H;

t € [0,1}]. Hence the term in the right haﬁd side of (32), muitiplied

by | g(zi) 12 tends to zero as i + « and therefore there exists an integer

Nt > N éuch that the test (8) is satisfied for k = 0 for all i.Z_N"'.
Now, since g(zi) >0 as i - w,_thege exists an integer N i_N"‘ at

which the test in step 6, viz.,ﬂg(zi) 12 <Y, will be satisfied. Then,

: -1
; - : _ —- s £ et
for all i > N, Z. 1 = 2, H, g(Z.), Wthh complétes ouy proor.

Theorem: Suppose that assumption (20) is satisfied and that algorithm

(4) has constructed a sequence'{zi}:=o. Then

i
R VA
0 <limsup ll z, - z | <1,
i +
. . . . nt 1 n
where T, is the unique positive root of the equation t -t -1=20

and z is the unique minimizer of f(+) (i.e., the R-ordetr of algorithm (4)
is T where R-order is defined by (9.2.5) in [ 5]).

Proof: Let N be an integer such that for all i > N

-11-



' -1
35. zgq =z; - H g(zi)

By Lemma (27), such an N exists. Then since H(.) is Lipshitz

continuous on C(ZO), for all i > N (since g(ﬁ) = 0)

36. Nz, -2 0=l - (ez)-5(E)]

1
< | g (11" H(zt (2,-2)) (z-2) ael
0

l .
-1 H(Ere (- Nz, = 2 1
< g I Hi 1l "(Hi H(z+t(zi z)H | fzi z lldt

0

1
I a~l o ( (7 —He ) I+ H(z) = e (o -2 1 Bz -2l ) de
- 1 B : N i 1 1

ER j )

0

| A

< It g () b+ te | a3 110 2,-2 la,
0

where L is the Lipshitz constant for H(-) on C(zO). Now making use of
Lemma (22) and the fact that I H;l I is bounded for iz_N-
(since H;l -> H(é)_l), we conclude from (36) that there exists constants

A >0, =0, 1, 2, .., n-1, such that for all i > N

N
]
N>

n
-2 Ei: Az, -z,
37'. i+l fl 5_" z; z | i Zl_J -4
§=0

-12-



38.

39.

40.

41,

The desired result now follows from ( 7) and theorem (9.2.9) in [5 ].

Corollary: Under the conditions in theorem (33), any sequence'{zi}:=0

constructed by algorithm (4) satisfies

l/Ti

1im sup I g(z.)l <1,
o dwee *

) 1/Ti
lim sup [f(z,) - f(2)] <1
) 1 .
Proof: Since g(z) = 0,

l [ 4

I gtz | =1 g H(z bt (z,-2)) (2,-2) at |

1 _
<[ § | Ii.(zi+t(zi—§?) I a
0 ‘

<qlz-zl

where Q = sup'{" H(z) | | z © C(zo)}. Relation (39) now follows from

(41), (34) and the fact that Q

Next, again since g(z) = 0,

el z, -2 |

1/t

~13-
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1

42, f(zi) - f(g) = S (l—t)((zi—g),HK£+t(zi—£)) (21»2))dt

43,

44,

0

(1-t) a1z, - 2 12 ae

| A
O =™

=%5nzi_gﬂ

where 6 is an upper bound on the eigenvalues of H(z) for z € C(zo).

i
. 1/27
- ' = n
Relation (40) now follows from (42), (34) and the fact that (5 Q) > 1

as i » «». This completes our proof. =

m

T T B T Pl = - i e 4 o
We note "that the: vudy Clué we Hiaus Uss i +he zzsumpticn thar £0.)

A4

was. three times continuously differentiable and strictly-convex was in

the proof of lemma (27). At this point is is easy to show that lemma (27)

can also be proved under - the weaker assumption that f£(+) is only twice

continuously differentiable strictly convex and (24) holds. Thus suppose that

(o] . . ~
3 {zi}i=0-is any sequence such that z; >z as 1 >« and that

o -1 = . -1
Yiig T %1 " Hi g(zi) for all i > N, where N is such that Hi ‘ex1sts

for all i > N. Then (37) applies and yields

p n . o
N PN I r'zi: - 4>
by a-21< Iz, -2 I I 2y 4 % I, for a11 i > N

Now, by the mean value theorem, since‘g(;) =0,
1 .

l e, < g | Hlyg,, + 80y - D ds Ly =2
0

~14—



45,

46.

47,

<qly 21

n .
< Q I zi—z fl E I zi_j.—z ",
1=0

where Q is as in (41).

Now,

I z.-2 I gz | > (z.-z, g(z,)

1
g (zi—z, H\zi+s (zi—z) (zi—z)) ds
0

> q Iz -2 1%,

where Q is as in (42). Hence for all i > N

l g(zi) I >Q I z,-z l
and therefore (44) yields

Ve p <le@) I {5

n

Since E d zi'j-.g |- 0 as i > » , we conclude that there exists an

3=0

integer N > N such that

. nv'
)
j=0

Iz, .-z I} for a1l i > N
i-j -

I gy, 17 < -208") 1 gz 17 for a1l 4 > &

-15-



and hence that lemma (27) holds under the weaker assumption that f is-

only twice continuously differentiable and strictly convex.

Conclusion

We have presented in this paper an efficient method for unconstrained
minimization. It should be clear from the development that the
assumptions used to establish rate of convergence can be relaxed from a

t

global statement to a local one, i.e. as holding in a convex neighborhood
of a local minimum. It is also clear that one can cbnstruct several
other variants of the algorithm as, for example, by substituting a
conjugate directions method for the gradient method in the algorithm.

In some applications these alternative, more complex versions may be

preferred over the simplest one presented in this paper. - As long as one

B I U N P B .
SR e

T S P B
HIC widUu aily ULllce CULIVCL ZECLLL didiidiid—
J

zation method, the convergence and rate of convergence theorems, presented

in this paper, remain valid.

16~
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